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We study the collective properties of an array of nonlinear noisy oscillators driven by nonidentical periodic
signals. We consider the case of a globally coupled array of harmonically forced, weakly nonlinear oscillators
where there is a constant difference between the phases of the forcing signals applied to adjacent oscillators.
This system is a prototypical model of a nonlinear phased array receiver. We derive analytical results for the
array output in the limit of a large number of oscillators for the noise-free and noisy cases. Numerical
simulations show good agreement with the theoretical analysis.
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I. INTRODUCTION

An ensemble of coupled nonlinear oscillators is a para-
digm for many natural processes in physical, chemical, and
biological systems as well as in technological devices, such
as Josephson junction arrays[1] or solid-state laser arrays
[2]. The collective behavior of arrays of nonlinear oscillators
has attracted considerable attention in the last two decades.
Locally coupled oscillators often exhibit complicated spa-
tiotemporal patterns and chaos[3]. A network of globally
coupled oscillators undergoes a phase transition to a synchro-
nized state with nonzero mean-field oscillations[4–9].

The driven dynamics of nonlinear oscillators has a long
and rich history. Phenomena of synchronization, parametric
resonance, and chaos have been studied in detail. Externally
driven networks of coupled oscillators can be utilized for
beam steering in phased arrays[10].

Recently, an application of coupled nonlinear oscillators
for beam forming in a phased array receiver antenna has
been proposed[11,12]. It was shown that locally coupled
Van der Pol oscillators demonstrate a superior main-beam
resolution and sidelobe suppression compared to their linear
counterparts. However, Ref.[12] did not address one of the
most important aspects of antenna performance, namely, its
behavior in noisy environments. In this paper we investigate
the dynamics of an ensemble of nonlinear oscillators driven
by external periodic signals and noise. Unlike Ref.[12] we
consider an array ofglobally coupled oscillators, as it allows
a simpler analytical treatment of the stochastic problem,
while not changing the qualitative beam-forming perfor-
mance of the system. In earlier work[9] a similar problem
has been investigated, with the important difference that the
periodic driving signal was assumed identical in all ele-
ments; thus, the beam-forming abilities of such a network
could not be determined. Driven noisy nonlinear oscillators
sometimes exhibit the phenomenon of stochastic resonance,
which is associated with signal amplification due to noise at
a certain optimal noise level[13].

II. GLOBALLY COUPLED OSCILLATOR ARRAY
AS A PHASED ARRAY RECEIVER

A conceptual design of an array of globally coupled non-
linear oscillators working as a phased array receiver similar

to the one proposed earlier in Ref.[12] is shown in Fig. 1.
The N sensor elementsHi are assumed to be equally spaced
at a distanced along a straight line. The sensors are driven
by external signalsf jstd that are assumed to differ by a fixed
time delayDT=d sinu /c, wherec is the wave propagation
speed andu is the angle of incidence of the signal with
respect to the broadside direction of the array. For a mono-
chromatic plane wave with frequencyVs, the time delay
translates into phase differences between neighboring ele-
mentsDF=VsDT. Beam steering, as in conventional phased
arrays, can be achieved by insertion of tunable delay ele-
mentst j. In the following we assume that the beam is steered
to the broadside direction, so allt j =0.

For simplicity we assume that the received external sig-
nals drive a network of globally coupled weakly nonlinear
Van der Pol oscillators that can be described by the following
set of coupled Landau-Stuart equations for the complex am-
plitudeszj:

żj = sG + iv jdzj − Guzju2zj +
k

N
o
n=1

N

szn − zjd + feisVst+F jd

+ J j, j = 1, . . . ,N, s1d

where for an oblique plane waveF j =DFs j −1d with DF
introduced above,G is the oscillator “gain,” andJ is (com-
plex) stochastic additive white Gaussian noise acting inde-
pendently on each oscillator. The noise-free behavior of a
similar system with nearest-neighbor diffusive coupling and

FIG. 1. Nonlinear beam former.
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identical frequencies was studied in Ref.[12]. For large
enough driving strengthf .Vs−v and small phase differ-
encesDF,DFc, the oscillators synchronize to the driving
signals, and for largerDF they oscillate on average at their
natural frequencyv. This behavior leads to significant dif-
ferences in the beam pattern, which describes the spatiotem-
poral response of the output of the network at forcing fre-
quency, of the nonlinear beamformer as compared to a linear
one. The noise-free dynamics of the globally coupled array
(1) is qualitatively similar. Figure 2 shows the results of nu-
merical simulations of this system withN=20 elements for
v=1, Vs=1.2, k=10, f =1, andG=1.

III. PHASE APPROXIMATION

For the theoretical analysis of the oscillator array dynam-
ics, we use the standard simplification known as thephase
approximation[14]. Namely, we introducezj =aje

isVst+w jd and
assume that the magnitudesaj are slaved to the phasesw j.
This approximation is applicable for large gainG@k, f,
Vs−v. Furthermore, for large gainG, the amplitudes of all
oscillators are close to one. Ignoring the small deviations
aj −1, we obtain the following equation for the phases:

ẇ j = v j − Vs +
k

N
o
n=1

N

sinswn − w jd + f sinsF j − w jd + j j , s2d

where we assume that the independent stochastic variables
j j =ImsJ je

−iw jd are zero-mean and white Gaussian:kj jstdl
=0, kj jstdjkst8dl=2Ddst− t8dd jk. Without loss of generality
we may takeVs=0. Let us introduce the complex order pa-
rameter(the mean field)

R= reic =
1

N
o
n=1

N

eiwn, s3d

thus, Eq.(2) becomes

ẇ j = v j + kr sinsc − w jd + f sinsF j − w jd + j j . s4d

Equivalently, it can be written in terms of the complex
mean fieldR (3),

ẇ j = v j + k ImfRe−iw jg + f sinsF j − w jd + j jstd. s5d

IV. NOISE-FREE DYNAMICS

In this section we discuss the properties of the driven
system(4) without noise. It can be rewritten in a more com-
pact form

ẇ j = v j + Aj sinsf j − w jd s6d

with Aj =Îk2r2+ f2+2krf cossc−F jd and tansf j −F jd
=kr sinsc−F jd / fkr cossc−F jd+ fg. The case when allF j

=0 (all oscillators are driven in-phase) was studied by Sak-
aguchi[5]. He found that, depending on the relative magni-
tude of driving strengthf and coupling constantk, there can
be two distinct regimes: a forced-entrainment regime and a
mutual-entrainment regime. In the first case, all oscillators
can be divided into two groups: one is synchronized to the
driving force and the other remains unsynchronized. In this
case for the limit of largeN, the order parameter is stationary
(in the reference frame rotating with the driving frequency).
In the mutual-entrainment regime there are three groups of
oscillators: one group is synchronized to the driving force,
another group is mutually entrained, and a third group re-
mains unsynchronized. In this case the order parameter is
oscillating. Similar dynamics are observed in the general
caseF j Þ0.

Let us consider the forced-entrainment regime in the large
N limit, so we taker, c, Aj, andC j to be constant. Then Eq.
(6) describes standard oscillator phase locking. Depending
on the natural frequency, an oscillator is either locked, if
uv ju,Aj, or drifting, if uv ju.Aj.

Locked oscillators have fixed phases

w j = f j + arcsinsv j/Ajd, s7d

and drifting oscillators have running phases

FIG. 2. Comparison of dynamics response of aN=20-element array of forced-coupled oscillators. The top panels displays the phase of
elements vs time(seconds), the middle panels shows the frequency(radians/second) of the outputy=N−1on=1

N zn vs time(seconds), the lower
panels compares the spectrum of output(dB) vs frequency(radians/second) with the spectrum of anN-element linear beam former. The
synchronized response to a signal incident broadside to the array is visible in(a), whereas in(b) the response is unsynchronized when the
forcing signal is incident off-broadside.
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w j = f j + ṽ jt + hsṽ jtd, s8d

whereṽ j =Îv j
2−Aj

2 andhsxd is a 2p-periodic function ofx.
We assume that the distribution of oscillators’ natural fre-

quenciesgsvd is independent of the distribution of the driv-
ing phasesHsFd. Note that for an oblique plane wave
HsFd=F0

−1 within the interval s0,F0d and zero otherwise
with F0=NDF. The continuum analog of Eq.(3) is

reic =E
0

2p

dwnswdeiw, s9d

wherenswd is the oscillators’ phase distribution. Following
Ref. [4] we calculatenswd using Eqs.(7) and(8) as a sum of
two contributions, from locked oscillators

nlswd =E
−`

`

dFHsFdAg„A sinsw − f*d…cossw − f*dusw − f*d

s10d

and from drifting or desynchronized oscillators

ndsswd =
1

2p
E

−`

`

dFHsFdE
uvu.A

dvgsvd
Îv2 − A2

v − A sinsw − f*d
.

s11d

Here A=Îk2r2+ f2+2krf cossc−Fd, tansf* −Fd=kr sinsc
−Fd / fkr cossc−Fd+ fg, and usxd=1 for 0,x,p /2 and
zero otherwise.

Substituting(10) and (11) into Eq. (9), we get the self-
consistency equation for the order parameter

reic =E
−`

`

dFHsFdBsAdeif* s12d

with

BsAd =E
−A

A

dvSi
v

A
+Î1 −

v2

A2Dgsvd

+ iE
A

`

dvSv

A
−Îv2

A2 − 1Dfgsvd − gs− vdg. s13d

This complex equation defines the values ofr and c How-
ever, it is difficult to solve this equation in the general case.

Let us first consider the case of decoupled oscillatorsk
=0. ThenA= f, f* =F, andR drops out of the right-hand side
of Eq. (12), so we can calculate the mean field explicitly as

r0e
ic0 = BsfdZeiG, s14d

whereZ andG, real, are given by

ZeiG ; E
−`

`

dFHsFdeiF. s15d

For the uniform phase distributionHsFd=F0
−1 within the in-

terval 0,F,F0, the last formula simplifies toZ
=2F0

−1 sinsF0/2d andG=F0/2. The magnitude of the mean
field depends on the driving amplitude in a nontrivial man-
ner, as the latter determines the relative contribution of the

locked and drifting oscillators. For a monochromatic fre-
quency distributiongsvd=dsv−v0d, either all oscillators are
locked (if f .v0) or drifting otherwise. In the locked case,
the second term inBsfd is zero, and we getBsfd=fiv0

+Îf2−v0
2g / f, so r0=ZsF0d, c0=F0/2+arcsinsv0/ fd. In the

drifting case, the first term in(13) is zero, and we getBsfd
= ifv0−Îv0

2− f2g / f, so r0=ZsF0duBsfdu, c0=F0/2+p /2.
For small nonzerok we look for a solution of the form

r =r0+kr1+Osk2d, c=c0+kc1+Osk2d, wherer0, c0 are so-
lutions for the uncoupled oscillators, and approximateA< f
+kr0 cossc0−Fd, f* =F+kr0f−1 sinsc0−Fd. The first-order
correctionsr1, c1 can be found from

r1 + ic1r0 = r0e
−ic0FB8sfdE

−`

`

dFHsFdeiF cossc0 − Fd

+ iBsfdf−1E
−`

`

dFHsFdeiF sinsc0 − FdG . s16d

For largeF0 in synchronized casef .v0, the first-order cor-
rection to the mean-field magnitude is given by

r1 <
ZsF0d

2Îf2 − v0
2
. s17d

In the limit of strong couplingsk@1d all oscillators are
phase locked near the average phaseustd=o j=1

N w j. Summing
up all phase equations(4), we get

u̇ = v̄ +
f

N
o
j=1

N

sinsF j − u − dw jd, s18d

wherev̄=o j=1
N v j /N is the mean frequency of the oscillators

and dw j =w j −c̄ are (small) deviations of the individual
phases from the mean. Neglectingdw j, we get the closed
equation for the average phase

u̇ = v̄ +
f

N
o
j=1

N

sinsF j − ud, s19d

or in the continuum limitN@1,

u̇ = v̄ + fE
−`

`

dFHsFd sinsF − ud. s20d

This equation can be rewritten in the simpler form

u̇ = v̄ + fZ sinsG − ud. s21d

The oscillators are locked to the driving signal ifv̄, fZ
and drifting otherwise. In the locked regime, the mean field
is constant with amplituder l =1. In the drifting regime, the
mean field oscillates with respect to the driving signal and
the response at the “driving frequency”(in our caseVs=0, at
zero frequency) can be found as the time averagekeiul
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keiul =

E
0

2p

eiuu̇−1du

E
0

2p

u̇−1du

. s22d

Performing the integration we obtain the amplitude of the
mean field,

rdsF0d ; ukeiulu =
v̄ − Îv̄2 − f2G2

fG
. s23d

Figure 3 show the beam patterns corresponding to the cases
of weak coupling[k=0, Eq. (14)] and strong coupling[k
@1, Eq. (23)] for f =1 and a monodispersive frequency dis-
tribution with v0=0.9. The plot also shows numerically cal-
culated beam patterns fork=0,10, and an intermediate value
of k=0.5.

The role of the smallOskd correction(16) is illustrated by
Fig. 4, where the mean field dependence onk is shown for
three different directions. The numerical results forN=10 are
compared with analytical formula(16). As seen from this
figure, small coupling leads to an increase of the mean field.
Within the region of synchronizationZsF0d.v0/ f, this
trend continues for allk and eventuallyr →1 as k→`.

However, outside of the synchronized region, for stronger
coupling strength the trend is reversed and the mean field
decreases toward the strong-coupling limit(23).

V. FOKKER-PLANCK DESCRIPTION OF MANY NOISY
COUPLED OSCILLATORS „Nš1…

Now let us return to the case of noisy dynamics[ji Þ0 in
Eq. (4)]. For largeN, the mean fieldR is not fluctuating and
becomes a deterministic function. Then we can introduce the
single-oscillator probability distribution functionWjsw ,td
;Wsw ,t ;v j ,F jd=kw−w jstdl and write a Fokker-Planck
equation forWjsw ,td

]Wj

]t
= −

]

]w
fFjswdWjg + D

]2W

]w2 , s24d

where Fjswd=v j +kr sinsc−wd+ f sinsF j −wd=v j +Aj

3sinsf j −wd, Aj =Îk2r2+ f2+2krf cossc−F jd, and f j

=arctanfkr sinsc−F jd /kr cossc−F jd+ fg. The “phase drift
velocity” Fjswd is a 2p-periodic function ofw.

The stationary solution of Eq.(24) satisfying the periodic
boundary conditionWjswd=Wjsw+2pd is given by (cf.
[5,15])

Wjswd = expSv jw + f cossw − F jd + kr cossw − cd − kr cosc − f cosF j

D
D

351 +

se−2pv j/D − 1dE
0

w

ef−v jw̃−kr cossw̃−cd−f cossF j−w̃dg/Ddw̃

E
0

2p

ef−v jw̃−kr cossw̃−cd−f cossF j−w̃dg/Ddw̃ 6Wjs0d, s25d

FIG. 3. Mean-field magnituder as a function ofF0 in the ab-
sence of noise forN=10, f =1, v=0.9 and three different values of
coupling k=0,0.5,10. Lines correspond to theoretical formulas
(14) and (23).

FIG. 4. Mean-field magnituder as a function of coupling
strengthk in the absence of noise forN=10, f =1, v=0.9, and three
different values ofF0=1,3,8.

GABBAY, LARSEN, AND TSIMRING PHYSICAL REVIEW E70, 066212(2004)

066212-4



whereWjs0d is determined by the normalization condition

E
0

2p

Wjswddw = 1. s26d

Examples of the pair distribution function(PDF) distribu-
tions for k=DF=0 and various levels of noiseD are shown
in Fig. 5.

The mean fieldR can be calculated as

R=
1

N
o
n=1

N E Wnswdeiwdw. s27d

For largeN we can replace the sum by the integration over
the frequency and driving phasesFd distributions,

R=E
−`

`

gsvddvE
−`

`

HsFddFE
0

2p

dwWsw;v,Fdeiw.

s28d

This complex integral equation must be solved numerically
to obtainR.

A. Small noise

Let us consider the case of smallD. For locked oscillators
sv j ,Ajd, the probability distributionWj

l swd is localized near
the zeros ofFjswd

w0j = f j + arcsinsv j/Ajd. s29d

Expanding Fjswd=Sjsw−w0jd, where Sj =kr cossc−w0jd
+ f cossF j −w0jd, we get

Wj
l swd =Î Sj

2pD
e−Sjsw − w0jd

2/2D. s30d

For desynchronized oscillators, for smallD the probabil-
ity distribution can be found as the stationary solution of(24)
perturbatively,

Wj
dsswd = W0F

−1
„1 + DF8sfdF−2

… + OsD2d, s31d

where the normalization constantW0 is

W0 =E
0

2p

F−1swddw. s32d

After integration, we obtain

Wj
dsswd =

Îv j
2 − Aj

2

2puv j − Aj sinsw − f jdu

3S1 + D
Aj cossw − f jd

„v j − Aj sinsw − f jd…2D . s33d

The mean field can be found as in Sec. IV by averaging
eiw over all oscillators. In the continuum limit,

R=E
−`

`

HsFddFE
−`

`

gsvddvE
0

2p

eiwdw

3FE
−A

A

gsvddvWlswd +E
uvu.A

gsvddvWdsswdG ,

s34d

where we have dropped the subscriptj enumerating the os-
cillators. Using Eqs.(30) and (33), we obtain

R=E
−`

`

HsFddFfBsAd + DB1sAd + OsD2dgeif* s35d

with BsAd given by (13), and

B1sAd = −E
−A

A

s2Sd−1gsvdei arcsinv/Adv. s36d

Note that to first order inD, the noise correction only comes
from the contribution of the synchronized oscillators.

Now we again consider the case of zero couplingk=0. In
this caseS=Îf2−v2 andw0=F+arcsinv / f. In this case the
integral can be factored as

R= fBsfd + DB1sfdgE
−`

`

HsFdeiFdF. s37d

The angular dependence of the mean field is given by the
same integral as in the no-noise case. For small nonzero
coupling k!1, neglecting the termsOskDd, the Oskd cor-
rection can be taken directly from Eq.(16).

When k is large, the difference between phases of indi-
vidual oscillators is small,w j =u+k−1w̃ j +Osk−2d, where the
“mean phase”u=N−1ow j. Summing up all phase equations,
we get the equation for the mean phaseu,

FIG. 5. Phase distributionsWsfd for v=0.5, f =1, k=DF=0,
and three different values ofD
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u̇ = v̄ +
f

N
o
j=1

N

sinsF j − w jd +
1

N
o
j=1

N

j j

= v̄ +
f

N
o
j=1

N

fsinsF j − ud + k−1 cossF j − udw̃ jg + j̄. s38d

Here j̄ is the “mean” noise, which has varianceD /N and,
thus, it disappears in the limitN@1. Therefore, in the large-
coupling limit for largeN one can use noiseless formula(23).

To illustrate the role of noise let us again consider a
simple case of identical frequenciesgsvd=dsv−v0d and an
incident plane incident wave(HsFd=F0

−1 for 0,F,F0). If
f .v0, then all oscillators are locked and the second term in
(13) is absent. In this case the magnitude of the mean field is

r = S1 −
D

2Îf2 − v0
2D2 sinsF0/2d

F0
+ k

F0 − sinF0

2Îf2 − v0
2

, s39d

where r1 is found from (16). As seen from this formula,
while the fluctuations tend to reduce the mean-field signal,
the small couping always increases the response. For the
broadside direction, the last term in Eq.(39) is zero and the
higher-order corrections have to be taken into account. How-
ever, in fact forF0=0 the mean field can be found for arbi-
trary k from the following transcendental equation:

r = expF−
D

2uÎsf + krd2 − v0
2d
G , s40d

When 1−r !1, the explicit formula forr reads

r = expF−
D

2Îsf + kd2 − v2G . s41d

In Figs. 6(a) and 6(b) we present the beam patterns for
weak and strong coupling at various amounts of noise. Fig-
ure 6(a) shows the case of zero couplingk=0. In this case
increasing noise leads to a uniform decrease of the mean

field for all F0. However, for the case of strong coupling
[Fig. 6(b)], the effect of noise is strongly suppressed, espe-
cially away from the broadside directions.

The comparison between the theory and Monte Carlo
simulations for weaksk=0d and strongsk=10d coupling
cases is presented in Fig. 7. The agreement between simula-
tions and(39) is very good throughout the whole range of
NF. For strong coupling, Eq.(23) agrees with simulations
for largeNDF away from the broadside direction where the
meanfield magnitude is affected by partial synchronization
between oscillators and external field.

Figure 8(a) shows the dependence of the mean fieldr on
the coupling strength in Langevin simulations and in theory
(39) for a signal incident from the broadside direction.

Figure 8(b) shows the dependence of the mean fieldr on
the coupling strength in Langevin simulations for a larger
noise magnitudeD=0.1 at DF=0 (broadside), 0.3, and

FIG. 6. Beam patternsrsF0d for different amounts of noiseD for the cases of zero couplingk=0 (a) and strong couplingk=10 (b) for
N=10, f =1, v=0.9.

FIG. 7. Mean-field magnituder as a function of the phase span
NDF for N=10, f =1, D=0.1, v=0.9, and two values ofk=0,10:
comparison between Langevin simulations and theoretical formulas
(39) and (23).
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0.8, which corresponds to the first sidelobe. As seen from
this figure, in agreement with theoretical analysis, the ampli-
tude of the mean field always increases withk at smallk,
however, away from the broadside it diminishes again at
largerk.

Figure 8(c) shows the dependence of the mean fieldr on
the coupling strength in the Langevin simulations forDF
=0.8 at different noise magnitudes. In accord with our theo-
retical analysis, at largek the mean-field magnitude is insen-
sitive to the noise strength, while at smallk the mean field
diminishes withD. The behavior ofr for both large and
small k is in good quantitative agreement with theory.

The reason for the growth of the mean field withk at
the broadside direction can be explained as follows. In the
phase approximation the coupling parameterk characterizes
the strength of the nonlinearity. Fork→0, the oscillators
are decoupled and each of them is driven by its own signal
and noise. The outputs of these oscillators are signalseiw j

with phasesw j independently fluctuating near the same value
w0=arcsinsv0/ fd. Averaging the value ofeiw j over phase

fluctuations leads to the reduced value of the magnitude of
the averaged signalr ~exps−D /Îf2−v2d. Because the phase
fluctuations are not additive, averaging over many oscillators
does not eliminate this effect. On the other hand, for large
k@1, the oscillators are strongly coupled and their phase
differences tend to zero. So the whole array acts as a
single oscillator with the natural frequency equal to the
mean frequency of all oscillators, driven by an average
of all incoming signals and noise. Because all incoming
signals are identical at the broadside direction, this average
is equal to the original input plus the noise, which is reduced
by a factor ofN1/2 due to averaging. Thus, for largeN and
largek the magnitude of the output of the array approaches
one.

Figure 9 shows the noise dependence of the mean field for
different frequenciesv0 in the absence of coupling. The the-
oretical formula(39) works well for smallD,0.02, how-
ever, it is rather poor for largerD [Fig. 9(a)]. The range of
applicability of the formula shrinks asv→ f. We also calcu-
lated the mean field directly from Eq.(27) for k=0, using

FIG. 8. Mean-field magnituder as a function of the coupling strengthk for N=10, f =1, v=0.9, and small noiseD=0.01(a) and stronger
noise D=0.1 (b). (c) shows the dependence of the mean field onk for DF=0.8 and different values ofD. Dashed lines indicate the
theoretical dependencies for smallk (39) and largek (23).
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numerical integration to obtain the distribution function(25).
This theoretical formula is in excellent agreement with the
Langevin simulation over the whole range of noise magni-
tudes[see Fig. 9(b)].

VI. CONCLUSIONS

In this paper we analyzed the properties of a globally
coupled array of nonlinear oscillators acting as the beam
former of an array receiver antenna. Such a system possesses
a number of desirable properties, such as a tunable mainlobe
width with a flat shape around the broadside direction and
suppressed sidelobes. The mechanism of formation of this
unusual beam pattern is related to the synchronization
properties of nonlinear oscillators; at and near the broad-
side direction, the oscillators are synchronized by the exter-

nal signal, while outside the mainlobe, synchronization is
lost, and the oscillators are free-running at their natural
frequency.

A number of issues associated with performance of this
system have yet to be explored. In particular, because the
system is essentially nonlinear, interference with other strong
signals(jamming) cannot be described by a single beam dia-
gram and must be analyzed separately. Furthermore, unlike
the standard linear beam former, the selection of optimal
parameter values for nonlinear oscillators(nonlinear
“weights”) is far from trivial and no general algorithm exists
for that purpose.
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