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Globally coupled noisy oscillators with inhomogeneous periodic forcing
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We study the collective properties of an array of nonlinear noisy oscillators driven by nonidentical periodic
signals. We consider the case of a globally coupled array of harmonically forced, weakly nonlinear oscillators
where there is a constant difference between the phases of the forcing signals applied to adjacent oscillators.
This system is a prototypical model of a nonlinear phased array receiver. We derive analytical results for the
array output in the limit of a large number of oscillators for the noise-free and noisy cases. Numerical
simulations show good agreement with the theoretical analysis.
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[. INTRODUCTION to the one proposed earlier in R¢L2] is shown in Fig. 1.

An ensemble of coupled nonlinear oscillators is a para' NeN sensor elements; are assumed to be equally spaced
digm for many natural processes in physical, chemical, an@t & dlstancej along a straight line. The sensors are dlrlven
biological systems as well as in technological devices, sucRY external signalg;(t) that are assumed to differ by a fixed
as Josephson junction arral or solid-state laser arrays time delayAT=d sin 6/c, wherec is the wave propagation
[2]. The collective behavior of arrays of nonlinear oscillatorsspeed andd is the angle of incidence of the signal with
has attracted considerable attention in the last two decadeespect to the broadside direction of the array. For a mono-
Locally coupled oscillators often exhibit complicated spa-chromatic plane wave with frequends the time delay
tiotemporal patterns and cha@3]. A network of globally translates into phase differences between neighboring ele-
coupled oscillators undergoes a phase transition to a synchrementsA®=QAT. Beam steering, as in conventional phased
nized state with nonzero mean-field oscillatigas-9]. arrays, can be achieved by insertion of tunable delay ele-

The driven dynamics of nonlinear oscillators has a longmentss;. In the following we assume that the beam is steered
and rich history. Phenomena of synchronization, parametrito the broadside direction, so ail=0.
resonance, and chaos have been studied in detail. Externally For simplicity we assume that the received external sig-
driven networks of coupled oscillators can be utilized fornals drive a network of globally coupled weakly nonlinear
beam steering in phased arrgyl®]. Van der Pol oscillators that can be described by the following

Recently, an application of coupled nonlinear oscillatorsset of coupled Landau-Stuart equations for the complex am-
for beam forming in a phased array receiver antenna haglitudesz:
been proposed11,13. It was shown that locally coupled
Van der Pol oscillators demonstrate a superior main-beam o ‘

i X . o o N Al . K . ey
resolution and sidelobe suppression compared to their linear z =(G+iw))z G|Z]|ZZ] + NE (z,-2z)+ fel (st
counterparts. However, Rdf12] did not address one of the n=1
most important aspects of antenna performance, namely, its +2, j=1,...N, (1)
behavior in noisy environments. In this paper we investigate
the dynamics of an ensemble of nonlinear oscillators drivewhere for an oblique plane wav@;=A®(j—1) with Ad
by external periodic signals and noise. Unlike Réf2] we introduced aboveG is the oscillator “gain,” ancE is (com-
consider an array djlobally coupled oscillators, as it allows plex) stochastic additive white Gaussian noise acting inde-
a simpler analytical treatment of the stochastic problempendently on each oscillator. The noise-free behavior of a
while not changing the qualitative beam-forming perfor-similar system with nearest-neighbor diffusive coupling and
mance of the system. In earlier wof] a similar problem
has been investigated, with the important difference that the Nonlinear
periodic driving signal was assumed identical in all ele-  S¢msors Delays — Oscillators

ments; thus, the beam-forming abilities of such a network lHI l———l T, e

could not be determined. Driven noisy nonlinear oscillators

sometimes exhibit the phenomenon of stochastic resonance, | I j | 7 @
2 2

which is associated with signal amplification due to noise at
a certain optimal noise levél 3].

II. GLOBALLY COUPLED OSCILLATOR ARRAY ) ) 1
AS A PHASED ARRAY RECEIVER LHVH TT'_@_
A conceptual design of an array of globally coupled non-
linear oscillators working as a phased array receiver similar FIG. 1. Nonlinear beam former.

- Matched
E Filter
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FIG. 2. Comparison of dynamics response dia20-element array of forced-coupled oscillators. The top panels displays the phase of
elements vs timésecondy the middle panels shows the frequeni@dians/secondf the outputy= N‘liﬁzlzn vs time(secondy the lower
panels compares the spectrum of outfB) vs frequency(radians/secondwith the spectrum of aiN-element linear beam former. The
synchronized response to a signal incident broadside to the array is visilalg whereas inb) the response is unsynchronized when the
forcing signal is incident off-broadside.

identical frequencies was studied in R¢l2]. For large Equivalently, it can be written in terms of the complex
enough driving strengtti>Qs—w and small phase differ- mean fieldR (3),

encesA® <Ad., the oscillators synchronize to the driving ) o i

signals, and for largeA® they oscillate on average at their ¢ = o)+ k IM[RE4] + f sin(®; - @) + (1) (5)
natural frequencyw. This behavior leads to significant dif-

ferences in the beam pattern, which describes the spatiotem-

poral response of the output of the network at forcing fre- IV. NOISE-FREE DYNAMICS

quency, of the nonlinear beamformer as compared to alinear |, ihis section we discuss the properties of the driven

one. The noise-free dynamics of the globally coupled array, o4y without noise. It can be rewritten in a more com-
(1) is qualitatively similar. Figure 2 shows the results of nu- pact form
merical simulations of this system with=20 elements for

w=1,0s=1.2,«k=10,f=1, andG=1. @)=+ A sin(¢; - ¢)) (6)

with  Aj=yx?r2+f2+2«rf cody—®;) and tarig;—P;)
Ill. PHASE APPROXIMATION =« sin(—®;)/[«kr cogyy—P;)+f]. The case when alb,
=0 (all oscillators are driven in-phaps&as studied by Sak-
‘aguchi[5]. He found that, depending on the relative magni-
tude of driving strength and coupling constant, there can
be two distinct regimes: a forced-entrainment regime and a
mutual-entrainment regime. In the first case, all oscillators
can be divided into two groups: one is synchronized to the
driving force and the other remains unsynchronized. In this
Tase for the limit of larg&\, the order parameter is stationary
(in the reference frame rotating with the driving frequency

For the theoretical analysis of the oscillator array dynam
ics, we use the standard simplification known as phase
approximation[14]. Namely, we introduce; =a,’#*¢) and
assume that the magnitudasare slaved to the phases.
This approximation is applicable for large gad> «, f,
Q- w. Furthermore, for large gai®, the amplitudes of all
oscillators are close to one. Ignoring the small deviation
a;—-1, we obtain the following equation for the phases:

p N In the mutual-entrainment regime there are three groups of
¢ = w;— Qg+ NE sin(en— ¢;) + f sin(®; - ¢)) + &, (2)  oscillators: one group is synchronized to the driving force,
n=1 another group is mutually entrained, and a third group re-

where we assume that the independent stochastic variabl%%segmzﬂl:]nsyg?nﬁ:; rruz dedﬁalr:iéglsarceasoebge]?vg(;dier: tpr?e:ame?galls
&=Im(E;e™'%) are zero-mean and white Gaussigg;(t)) g y 9
=0, (&) &(t'))=2D&(t—-t") 5. Without loss of generality cased; #0. . . L

AR ke Let us consider the forced-entrainment regime in the large
we may take()s=0. Let us introduce the complex order pa- limit, so we taker, i, A;, and¥; to be constant. Then Eq.
rametefthe mean fiely ! !

(6) describes standard oscillator phase locking. Depending
1 N on the natural frequency, an oscillator is either locked, if
R=re'¥==> gén, (3) lwj| <A, or drifting, if |wj|>A;.
Np=1 Locked oscillators have fixed phases

thus, Eq.(2) becomes @) = ¢; + arcsinwj/Ay), (7)

@ = wj+ k1 Sin(y— @) + fsin(®@; — ¢)) + §. (4)  and drifting oscillators have running phases
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wherew; = \Ja,j —Aj2 andh(x) is a 2r-periodic function ofx.

PHYSICAL REVIEW E 70, 066212(2004)

locked and drifting oscillators. For a monochromatic fre-
quency distributiorg(w) = 8(w—wy), either all oscillators are
locked (if f> wq) or drifting otherwise. In the locked case,

We assume that the distribution of oscillators’ natural fre-the second term iB(f) is zero, and we geB(f)=[iw,

guenciegy(w) is independent of the distribution of the driv-
ing phasesH(®). Note that for an oblique plane wave
H(<I>)=<1351 within the interval (0,®,) and zero otherwise
with ®y=NA®. The continuum analog of E@3) is

2
rei’”:f den(p)e?, (9

0

wheren(¢) is the oscillators’ phase distribution. Following
Ref. [4] we calculaten(¢p) using Eqs(7) and(8) as a sum of
two contributions, from locked oscillators

n'(e) = f dPH(P)AG(A sin(¢ — ¢))cog ¢ — ) B — bx)

(10)
and from drifting or desynchronized oscillators
1 % Vr'wZ_AZ
nds( ):—f ddH(D) dog(w) ——————.
Y om ), o[ >A P = Asine— )
(11)

Here A=\k?r2+f2+2«rf codyy— D), tan(p.—P)=«r sin(y
-®)/[kr coyy—D)+f], and (x)=1 for 0<x<=/2 and
zero otherwise.
Substituting(10) and (11) into Eq. (9), we get the self-
consistency equation for the order parameter
rel’ = f ddH(P)B(A)E (12)

with

A W wZ
B(A) = f_Adw<|K + \ll—ﬁ)g(a})
+ifm
A

This complex equation defines the valuesr adnd ¢ How-

w w2
dw(; Vo 1)[9((») -g(-w)]. (13

+\f2=wl]/f, S0 rg=Z(®y), ho=Dy/2+arcsirfwy/f). In the
drifting case, the first term iGl3) is zero, and we geB(f)
Zi[wo—wi— 211, s0rg=Z(Dg)|B(f)], thg=Do/2+7/2.

For small nonzeroc we look for a solution of the form
r=ro+«ri+0(k?), =i+ ki +O(k?), Wherer, ¢, are so-
lutions for the uncoupled oscillators, and approximate f
+ Kl o COthg— D), =D+ «rof L sin(yfp— D). The first-order
correctionsry, i, can be found from

ry+iggro=ree’ *”O{B’(f)f dPH(D)e® cog iy — P)

+ iB(f)f"lf

—00

dDPH(D)E?® sin(yy— D) |. (16)

For large®, in synchronized casE> w,, the first-order cor-
rection to the mean-field magnitude is given by

Z(Py)
ry= —WZ — 7 (17)
In the limit of strong coupling x> 1) all oscillators are
phase locked near the average phé(s;}a:E}\‘:lgoj. Summing
up all phase equationg), we get

N

- f
0=w+ =2, sin® - 6-5¢p)),
Nj=1

(18

whereE:E}\‘zlgj/N is the mean frequency of the oscillators

and dpj=¢;—¢ are (smal) deviations of the individual
phases from the mean. Neglectidgp;, we get the closed
equation for the average phase

ever, it is difficult to solve this equation in the general caseor in the continuum limitN>1,

Let us first consider the case of decoupled oscillators
=0. ThenA=f, ¢.=d, andR drops out of the right-hand side

of Eqg. (12), so we can calculate the mean field explicitly as

roe¥o=B(f)zer, (14
whereZ andT’, real, are given by
Zd" = f ddH(P)e®. (15)

For the uniform phase distributid|=l(¢>):<1>5l within the in-
terval 0<d<d, the last formula simplifies tozZ
=20, sin(®y/2) andT'=dy/2. The magnitude of the mean

N
o f
0=w+—>, sin®; -0, (19
NiZ
f=w+f f dDH(®) sin(® - 6). (20)
This equation can be rewritten in the simpler form
f=w+ fZsin(I" - 6). (21

The oscillators are locked to the driving signalit fZ
and drifting otherwise. In the locked regime, the mean field
is constant with amplitude,=1. In the drifting regime, the
mean field oscillates with respect to the driving signal and

field depends on the driving amplitude in a nontrivial man-the response at the “driving frequenay our case),=0, at
ner, as the latter determines the relative contribution of theero frequencycan be found as the time avera@)
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FIG. 3. Mean-field magnitude as a function of®, in the ab-
sence of noise foN=10, f=1, =0.9 and three different values of
coupling «k=0,0.5,10. Lines correspond to theoretical formulas
(14 and(23).

FIG. 4. Mean-field magnitude as a function of coupling
strengthk in the absence of noise fdi=10,f=1, »=0.9, and three
different values ofby=1,3,8.

2 However, outside of the synchronized region, for stronger
f &9 1de coupling strength the trend is reversed and the mean field
. 0 decreases toward the strong-coupling lig28).
(€)= —5— (22)
f el
0 V. FOKKER-PLANCK DESCRIPTION OF MANY NOISY

. . . . . COUPLED OSCILLATORS (N>1)
Performing the integration we obtain the amplitude of the

mean field, Now let us return to the case of noisy dynamiés# 0 in
— = Eq. (4)]. For IargeN., t_hg meanfield? is not fluctugting and
ro(®g) = [(6%] = M (23) becomes a deterministic function. Then we can introduce the
o fG single-oscillator probability distribution functioW;(¢,t)

Figure 3 show the beam patterns corresponding to the casag P L@, P)=p=gy(t)) and write a Fokker-Planck

of weak coupling[x=0, Eq.(14)] and strong coupling« €quation forWj(e. )
>1, Eq.(23)] for f=1 and a monodispersive frequency dis-

tribution with w,=0.9. The plot also shows numerically cal- M - i[Fj(@)Wj] + Daz_V;/, (24)
culated beam patterns fa=0, 10, and an intermediate value ot dp d
of k=0.5.

The role of the smalD(«) correction(16) is illustrated by ~ Where Fi(@)=w+ k1 sin(yy— @) +f Sin(D; - @) = wj + A

Fig. 4, where the mean field dependencerois shown for ~ XSin(¢j—=@), A=yK’r?+f2+2rf codyy-®), and ¢,
three different directions. The numerical results¥r10 are  =arctafxr sin(y—®;)/ kr cody—®;)+f]. The “phase drift
compared with analytical formulél6). As seen from this velocity” Fj(¢) is a 2m-periodic function ofe.

figure, small coupling leads to an increase of the mean field. The stationary solution of E¢24) satisfying the periodic
Within the region of synchronizatiorZ(®o) > wy/f, this  boundary conditionW(¢)=W;(¢+2m) is given by (cf.
trend continues for allk and eventuallyr —1 as x—oe. [5,19)

wj¢ + f cogp - D)) + k1 codp = ) = kT cosy— f cos<I>j)

W(p) = exp( D

¢
(e—27rwj/D _ 1)J e[—wJE—Kr cogo—y)—f cos(d)j—}ia)]/Dd’;D
0

27 VVJ (0) ! (25)
e[_wj’é,—,(r coqp-i)—f COS((D]‘_;?)]/DdE)

Xy 1+

0
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W(g) (rad”)

FIG. 5. Phase distribution$/(¢) for ©=0.5, f=1, k=A®=0,
and three different values @

whereW,;(0) is determined by the normalization condition

2m
W(p)de=1.
0

(26)

Examples of the pair distribution functiqgigkDF) distribu-
tions for k=A®=0 and various levels of noide are shown
in Fig. 5.

The mean fieldR can be calculated as

N
1 )
R==2 | Wy(p)e“de. (27)
Nn:1

PHYSICAL REVIEW E 70, 066212(2004)

For desynchronized oscillators, for smBllthe probabil-
ity distribution can be found as the stationary solution2sf
perturbatively,

W) =WoF (1 +DF'($)F 2 +O(D?),  (31)
where the normalization constaw, is
2
Wo = f Fl(¢)de. (32
0
After integration, we obtain
lw? — A2
VVdS( ): \/wl . |
e 27T|wJ—A] Sln(qo—¢j)|
A cos¢ — &) )
X|1+D—1— : . (33
( (o = A sin(e = ¢)))?

~ The mean field can be found as in Sec. IV by averaging
€? over all oscillators. In the continuum limit,

o o 2
R= f H(d)dd J g(w)de e?de

—0 0

A
xl f g(w)doW (@) + f g(w)dwvvd“‘(cp)],
-A \w\>A
(34

where we have dropped the subsciinumerating the os-
cillators. Using Eqs(30) and(33), we obtain

R= J " H(@)0P[B(A) + DBy(A) + ODIJd*  (35)

—00

For largeN we can replace the sum by the integration over

the frequency and driving phag®) distributions,

o 0 2
R:f g(w)dwj H(@)d@f deW(p; w,D)e?.

0

(28)

. . : o f
This complex integral equation must be solved numerically

to obtainR.

A. Small noise

Let us consider the case of smAll For locked oscillators
(0j<A)), the probability distributior\/\l}(@ is localized near
the zeros ofFj(¢)

Poj = ¢] + arCSir(w]-/Aj) . (29)
Expanding Fj(¢)=S(¢—¢q), where S=xr cody—¢q)
+f cogP; - ¢y;), we get

Wi(e) = ZSTJBG_%(“" ¢0)%20,

(30

with B(A) given by(13), and

A
Bl(A) — J (25)—lg(w)ei arcsinw/Adw.

-A

(36)

Note that to first order iiD, the noise correction only comes
rom the contribution of the synchronized oscillators.

Now we again consider the case of zero coupk®p. In
this caseS=f?-w? and p,=® +arcsinw/f. In this case the
integral can be factored as

R=[B(f) + DBy(f)] f ’ H(D)ePdd. (37

The angular dependence of the mean field is given by the
same integral as in the no-noise case. For small nonzero
coupling k<1, neglecting the term®(«D), the O(k) cor-
rection can be taken directly from E¢L6).

When « is large, the difference between phases of indi-
vidual oscillators is smallp;= 6+ K‘17pj+O(K‘2), where the
“mean phase"0=N‘1E<pj. Summing up all phase equations,
we get the equation for the mean phake

066212-5
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FIG. 6. Beam patterng®,) for different amounts of noisB for the cases of zero coupling=0 (a) and strong coupling=10 (b) for
N=10,f=1, ®=0.9.

ot N 1 N field for all ®,. However, for the case of strong coupling
0=w+ NE sin(®; — ¢)) + NE 3 [Fig. 6b)], the effect of noise is strongly suppressed, espe-
=1 =1 cially away from the broadside directions.
¢ N . The comparison between the theory and Monte Carlo
—w+ NE [sin(®; - 0) + Kt codd; - O] + & (38) simulations for weak(x=0) and strong(x=10) coupling

j=1 cases is presented in Fig. 7. The agreement between simula-

_ tions and(39) is very good throughout the whole range of

Here ¢ is the "mean” noise, which has varian€¢N and, N®. For strong coupling, E¢23) agrees with simulations

thus, it disappears in the limN> 1. Therefore, in the large- for large NA® away from the broadside direction where the

coupling limit for largeN one can use noiseless form@8).  meanfield magnitude is affected by partial synchronization
To illustrate the role of noise let us again consider abetween oscillators and external field.

simple case of identical frequencigéw)=8w—wgy) and an Figure 8a) shows the dependence of the mean fielth

incident plane incident wav(sb-l(d)):rl)(;l for0<® < dy). If the coupling strength in Langevin simulations and in theory

f > wy, then all oscillators are locked and the second term i(39) for a signal incident from the broadside direction.

(13) is absent. In this case the magnitude of the mean field is Figure &b) shows the dependence of the mean fietsh

the coupling strength in Langevin simulations for a larger

(- <1_ D )25in(<1>ol2) +K<1>0—Sinq)o (39) noise magnitudeD=0.1 at A®=0 (broadsidg 0.3, and
2\“"’]‘2 - wé [OF 2\e”f2 - wy ’
1‘~AA ‘ 4 1 ' 1 ' I
wherer, is found from (16). As seen from this formula, -
while the fluctuations tend to reduce the mean-field signal, * oy
the small couping always increases the response. For th 08f ‘x\‘ ]
broadside direction, the last term in E§9) is zero and the L é\
higher-order corrections have to be taken into account. How- sl ‘.‘ 3 |
ever, in fact fordy=0 the mean field can be found for arbi- ' \ \4
trary « from the following transcendental equation: ¢ S
L4
04} oo .
D "
r:exp{— ’ — ] (40 I LA )
2 V(f+ kr)* = wp) BN
o2 v alABA s
When 1+ <1, the explicit formula for reads i ‘3‘ #/f LR VLW ]
A g oA AL D
D (41) 0 A W ] AKX ] .‘AA J‘A
r=zexp - ——|. 0 5 10 15 20
2V(f + k)% - &? NA®D (rad)

In Figs. §a) and Gb) we present the beam patterns for  F|G. 7. Mean-field magnitude as a function of the phase span
weak and strong coupling at various amounts of noise. FIgNA® for N=10, f=1, D=0.1, »=0.9, and two values o£=0, 10:
ure Ga) shows the case of zero coupling=0. In this case comparison between Langevin simulations and theoretical formulas
increasing noise leads to a uniform decrease of the mea9) and(23).
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1
08 —e AD=0 ]
0.998 | T d AG=0.3
AP=0.8
06 | ;
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= #e—i langevin - 1
0.994 F ] 0.4 F e a W
0.992 | i 02 i
0.99 : . . 0 . ' '
0 0.5 1 1.5 2 0 0.5 1 15 2
(a) K (b) N
0.4
o——e D=0
»— D=0.01
D=0.05
03 f ety D=0.1 ]
- 0.2 4 .
01 F
0 . . .
0 0.5 1 1.5 2

(c) K

FIG. 8. Mean-field magnitudeas a function of the coupling strengifor N=10,f=1, ®=0.9, and small noisB=0.01(a) and stronger
noise D=0.1 (b). (c) shows the dependence of the mean fieldxofor A®=0.8 and different values db. Dashed lines indicate the
theoretical dependencies for smal(39) and largex (23).

0.8, which corresponds to the first sidelobe. As seen fronfluctuations leads to the reduced value of the magnitude of
this figure, in agreement with theoretical analysis, the amplithe averaged signak:exp(-D/\f>—w?). Because the phase
tude of the mean field always increases wittat smallx,  fluctuations are not additive, averaging over many oscillators
however, away from the broadside it diminishes again atloes not eliminate this effect. On the other hand, for large
larger «. k>1, the oscillators are strongly coupled and their phase

Figure §c) shows the dependence of the mean fielwh  differences tend to zero. So the whole array acts as a
the coupling strength in the Langevin simulations fob  single oscillator with the natural frequency equal to the
=0.8 at different noise magnitudes. In accord with our theoimean frequency of all oscillators, driven by an average
retical analysis, at large the mean-field magnitude is insen- of all incoming signals and noise. Because all incoming
sitive to the noise strength, while at smallthe mean field signals are identical at the broadside direction, this average
diminishes withD. The behavior ofr for both large and is equal to the original input plus the noise, which is reduced
small  is in good quantitative agreement with theory. by a factor ofN'2 due to averaging. Thus, for lardé and

The reason for the growth of the mean field withat  large « the magnitude of the output of the array approaches
the broadside direction can be explained as follows. In thene.
phase approximation the coupling parametetharacterizes Figure 9 shows the noise dependence of the mean field for
the strength of the nonlinearity. For— 0, the oscillators different frequenciesy in the absence of coupling. The the-
are decoupled and each of them is driven by its own signabretical formula(39) works well for smallD <0.02, how-
and noise. The outputs of these oscillators are sigedls ever, it is rather poor for larged [Fig. Xa)]. The range of
with phasesp; independently fluctuating near the same valueapplicability of the formula shrinks as— f. We also calcu-
pp=arcsifwy/f). Averaging the value of'¥i over phase lated the mean field directly from E@27) for =0, using
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FIG. 9. Mean-field magnitudeas a function of noise strengih for N=10,f=1, A® =0, k=0, and three different detuning frequencies
wp: (a) comparison between the Langevin simulations and(Bg). and (b) comparison between simulations and E2J/).

numerical integration to obtain the distribution functi@b). nal signal, while outside the mainlobe, synchronization is
This theoretical formula is in excellent agreement with thelost, and the oscillators are free-running at their natural
Langevin simulation over the whole range of noise magnifrequency.
tudes[see Fig. ®)]. A number of issues associated with performance of this
system have yet to be explored. In particular, because the
system is essentially nonlinear, interference with other strong
VI. CONCLUSIONS signals(jamming cannot be described by a single beam dia-
gram and must be analyzed separately. Furthermore, unlike

In this paper we analyzed the properties of a gIobaIth tandard i b f th lecti f optimal
coupled array of nonlinear oscillators acting as the beanj® Standard linear beam former, the selection of optima
ameter values for nonlinear oscillator&onlinear

former of an array receiver antenna. Such a system possess{é%r_ o - . )
a number of desirable properties, such as a tunable mainlogwe'ghtw is far from trivial and no general algorithm exists
width with a flat shape around the broadside direction and®" that purpose.

suppressed sidelobes. The mechanism of formation .of t'hIS ACKNOWLEDGMENT

unusual beam pattern is related to the synchronization
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